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Abstract. We extend the notion of symmetry type graphs of maps to in-
clude maniplexes and (abstract) polytopes, using them to study k-orbit
maniplexes (where the automorphism group has k orbits on flags). In
particular, we show that there are no fully-transitive k-orbit 3-maniplexes
with & > 1 an odd number. We classify 3-orbit maniplexes and determine
all face transitivities for 3- and 4-orbit maniplexes. Moreover, we give
generators of the automorphism group of a maniplex, given its symme-
try type graph. Finally, we extend these notions to oriented maniplexes,
and we provide a classification of oriented 2-orbit maniplexes and a
generating set for their orientation-preserving automorphism group.

1. Introduction

While abstract polytopes are a combinatorial generalisation of classical poly-
hedra and polytopes, maniplexes generalise maps on surfaces and (the flag
graph of ) abstract polytopes. The combinatorial structure of (n—1)-maniplexes
and n-polytopes is completely determined by an edge-coloured n-valent graph
with chromatic index n, often called the flag graph. In particular, maps cor-
respond to 2-maniplexes [21]. The symmetry type graph of a map is the
quotient of its flag graph under the action of the automorphism group. This
notion is equivalent to the Delaney-Dress symbol, described in [6, 7, 13] and
also used in [5]. In this paper we extend the notion of symmetry type graphs
of maps to maniplexes (and polytopes). Given a maniplex, its symmetry type
graph encapsulates all the information of the local configuration of the flag
orbits under the action of the automorphism group of the maniplex.
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Traditionally, the main focus of the study of maps and polytopes has
been their symmetries. Of particular interest are the maps and polytopes that
are regular (having the maximum degree of symmetry) and chiral (having the
maximum degree of symmetry by rotation) [15, 16, 19]. Edge-transitive maps
were studied in [20] by Siraii, Tucker and Watkins. Such maps have either 1, 2,
or 4 orbits of flags under the action of the automorphism group. More recently
Orbanié, Pellicer and Weiss extended this study and classified k-orbit maps
(maps with & orbits of flags under the action of their automorphism group) up
to k <4 in [17]. Little is known about polytopes that are neither regular nor
chiral. In [11] Hubard gives a complete characterisation of the automorphism
groups of 2-orbit and fully-transitive polyhedra (that is, polyhedra whose
automorphism group is transitive on the vertices, edges and faces). Moreover,
she finds generators of the automorphism group of a 2-orbit polytope of any
given rank.

Symmetry type graphs of the Platonic and Archimedean solids were
determined in [14]. In [4] Del Rio-Francos, Hubard, Orbani¢ and Pisanski
determine the possible symmetry type graphs of 2-maniplexes of up to 5
vertices and give, for up to 7 vertices, the possible symmetry type graphs
that a properly self-dual, an improperly self-dual, and a medial 2-maniplex
might have. The possible symmetry type graphs that a truncation of a map
can have is determined in [3]. A strategy for generating symmetry type graphs
can be found in [1].

Using symmetry type graphs, we classify 3-orbit maniplexes and de-
scribe generators of their automorphism groups. In particular, we show that
3-orbit maniplexes are never fully-transitive, but they are i-face-transitive
for all but one or two values of i, depending on the class. We extend further
the study of symmetry type graphs to show that if a 4-orbit maniplex is not
fully-transitive, then it is i-face-transitive for all but at most three values of
i. Moreover, we show that a fully-transitive 3-maniplex (or 4-polytope) that
is not regular cannot have an odd number of flag-orbits under the action of
the automorphism group.

The main result of the paper is stated in Theorem 4, where we give
generators for the automorphism group of a k-orbit maniplex with respect to
a chosen base flag.

The paper is divided into six sections, organised in the following way.
In Section 2, we review some basic theory of polytopes and maniplexes, and
describe their respective flag graphs. In Section 3, we extend the concept
of symmetry type graphs of maps to maniplexes, and describe some of their
properties. In Section 4, we study symmetry type graphs of highly symmetric
maniplexes. In particular, we classify the possible symmetry type graphs with
3 vertices, determine the possible face-transitivities that a 4-orbit maniplex
can have, and study some properties of fully-transitive maniplexes of rank
3. In Section 5 we give generators of the automorphism group of a k-orbit
maniplex. Finally, in Section 6, we define oriented and orientable maniplexes.
We then define the oriented flag di-graph and symmetry type di-graph of an
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oriented maniplex, and use the latter to classify oriented 2-orbit maniplexes
and give generators for their orientation-preserving automorphism group.

2. Abstract Polytopes and Maniplexes
2.1. Abstract Polytopes

In this subsection we briefly review the basic theory of abstract polytopes and
their monodromy groups (for details we refer the reader to [16] and [12]).

An (abstract) polytope of rank n, or simply an n-polytope, is a partially
ordered set P with a strictly monotone rank function with range {—1,0,...,n}.
An element of rank j is called a j-face of P, and a face of rank 0, 1 or n—1 is
called a vertex, edge or facet, respectively. A chain of P is a totally ordered
subset of P. The maximal chains, or flags, all contain exactly n + 2 faces,
including a unique least face F_; (of rank —1) and a unique greatest face F,
(of rank n). The set of all flags of P shall be denoted by F(P). A polytope
P has the following homogeneity property (diamond condition): whenever
F < G, with F a (j — 1)-face and G a (j + 1)-face for some j, then there are
exactly two j-faces H with ' < H < G. Two flags are said to be adjacent
(i-adjacent) if they differ in a single face (just in their i-face, respectively).
The diamond condition can be rephrased by saying that every flag ® of P
has a unique i-adjacent flag, denoted ®?, for each i = 0,...,n — 1. We ex-
tend this notation inductively and say that @itk = (@ioit-ik-1)ik for
ig,...1% € {0,...,n — 1}. Finally, P is strongly flag-connected in the sense
that, if ® and ¥ are two flags, then they can be joined by a sequence of
successively adjacent flags, each containing ® N W.

We note that if F'is an i-face of P, then we may naturally identify F' with
the poset {G | G < F'}. This poset clearly satisfies all of the requirements to
be a polytope, and so we may view the i-faces of P as i-polytopes themselves.

Let P be an abstract n-polytope and for each i € {0,...,n — 1}, let
r; be the element of Sym(F(P)) that sends each flag to its i-adjacent flag.
That is, for each ® € F(P),

" = @7,

where @™ denotes the action of r; on the flag ®. The group (ro,71,...,7n—1)
is called the monodromy (or connection) group of P (see for example [8, 12]),
which we will denote by Mon(P). Because P satisfies the diamond condition,
each of the permutations r; is an involution. We furthermore observe that
whenever |i — j| > 2, @5 = ®)* implying that in this case, the permutation
r;7; is also an involution. Hence, Mon(P) is a quotient of the universal string
Coxeter group [00,...,00] = (rq, ..., n—1), whose only defining relations are
r2 = ¢ and (r;7;)? = € whenever |i — j| > 2. Note that the connectivity of P
immediately implies that Mon(P) acts transitively on F(P)

An automorphism of a polytope P is a bijection of P that preserves the
order. We shall denote the group of automorphisms of P by Aut(P). Note
that any automorphism of P induces a bijection of its flags that preserves
the i-adjacencies, for every i € {0,1,...,n — 1}. A polytope P is said to be



4 G. Cunningham, M. del Rio, I. Hubard and M. Toledo

regular if the action of Aut(P) is regular on F(P). If Aut(P) has exactly 2
orbits on F(P) in such a way that adjacent flags belong to different orbits, P
is called a chiral polytope. We say that a polytope is a k-orbit polytope if the
action of Aut(P) has exactly k orbits on F(P). Hence, regular polytopes are
1-orbit polytopes and chiral polytopes are (one type of) 2-orbit polytopes.

Given an n-polytope P, we define the flag graph Gp of P as follows.
The vertices of Gp are the flags of P, and we put an edge between two of
them whenever the corresponding flags are adjacent. Hence Gp is n-valent
(i-e., every vertex of Gp has exactly n incident edges; to reduce confusion we
avoid the alternative terminology ‘n-regular’). Furthermore, we can colour
the edges of Gp with n different colours as determined by the adjacencies of
the flags of P. That is, an edge of Gp has colour 4, if the corresponding flags
of P are i-adjacent. In this way every vertex of Gp has exactly one edge of
each colour (see Figure 1).

FI1GURE 1. The flag graph of a cubeoctahedron.

It is straightforward to see that each automorphism of P induces an
automorphism of the flag graph Gp that preserves the colours. Conversely,
every automorphism of Gp that preserves the colours is a bijection of the
flags that preserves all the adjacencies, inducing an automorphism of P. In
other words, the automorphism group Aut(P) of P is the colour preserving
automorphism group Aut,(Gp) of Gp.

Note that the connectivity of P implies that the action of Aut(P) on
F(P) is free (or semiregular). Hence, the action of Aut,(Gp) is free on the
vertices of the graph Gp.

Since r; € Mon(P) takes each flag ® to @, it is natural to label the
edges of Gp by the elements r; instead of the colour ¢. Furthermore, to each
walk along the edges of Gp, we can associate an element w of Mon(P). Hence,
the connectivity of P implies that the action of Mon(P) is transitive on the
vertices of Gp. Note that the i-faces of P can be regarded as the orbits of
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flags under the action of the subgroup H; = (r; | j # 4). The i-faces of P
can be also thought of as the connected components of the subgraph of Gp
obtained by deleting all the edges of colour 1.

2.2. Maniplexes

Maniplexes were first introduced by Steve Wilson in [21], aiming to unify
the notion of maps and polytopes. In this subsection we review their basic

theory.
Let M consist of a set of flags F and a sequence of perfect matchings
(ro,71,...,7n), each of them partitioning the set F into parts of cardinality

2. Suppose that the partitions determined by 7; and r; are disjoint for i # j;
in other words, there are no flags such that r; and r; match them to the
same flag. Then M is an n-complex if it is connected in the following way.
Thinking of the n-complex M as the graph G4 with vertex set F, and with
edges of colour i corresponding to the matching induced by r;, we ask for the
graph G to be connected. Note that, in G, each r; represents a matching
of the graph. Hence, the subgraph of Ga( with edges of two given colours 4
and j form a 2-factor of the graph.

Each of the matchings r; induces a permutation of F in a natural way, by
sending each flag ® to the flag that r; matches to ®, which we shall denote
by ®°. (We will abuse notation and also use 7; to denote the permutation
induced by r;.) Note that we then have that (®°)" = ® for every flag @,
implying that r;, viewed as an element of Sym(F), is an involution. Hence, the
group Mon(M) generated by the permutations rg,71,...,r, is the quotient
of a Coxeter group. We say that M is an n-manipler whenever the group
Mon(M) is in fact the quotient of a string Coxeter group. In other words,
a maniplex is a complex such that the permutations 7;7; are involutions
whenever |i — j| > 2. Equivalently, if the graph G4 is such that the 2-factors

of colours ¢ and j are squares for all ¢,5 € {0,...,n} such that |i — j| > 1,
then the complex M is in fact a maniplex. The group Mon(M) is called
the connection group of the maniplex and rg,r1,...,r, are its distinguished

generators. Note that, since r;r; = r;r; whenever |i — j| > 2, then for any
flag ® of M and 4,5 € {0,...,n} such that |i — j| > 2 we have that &%/ =
Priti = Privi = (I)j’i.

A 0-maniplex must be a graph with two vertices joined by an edge of
colour 0. A l-maniplex is associated to a 2-polytope or l-gon, whose graph
contains 2[ vertices joined by a perfect matching of colour 0 and a perfect
matching of colour 1, each matching of size {. Every 2-maniplex induces a
map (a 2-cell embedding of a connected graph on a surface). Furthermore,
a map such that itself and its dual have no vertex of degree 1 induces a 2-
maniplex. Any (n + 1)-polytope can be thought as an n-maniplex. However,
some maniplexes do not induce polytopes (see [21]).

An automorphism a of an n-maniplex is a colour-preserving automor-
phism of the graph Ga. Hence, a can be seen as a permutation of the flags
in F that commutes with each of the permutations in the connection group.
In analogy with polytopes, the connectivity of the graph G, implies that the
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action of the automorphism group Aut(M) of M is free on the vertices of
gm.

To have consistent concepts and notation between polytopes and ma-
niplexes, we shall say that an i-face (or a face of rank i) of a maniplex is a
connected component of the subgraph of G obtained by removing the i-edges
of G. Furthermore, we say that two flags ® and ¥ are i-adjacent if ¢™ = ¥
(note that since r; is an involution, ®"* = ¥ implies that U™ = ®, so the
concept is symmetric).

Just as each i-face of a polytope corresponds to an i-polytope, we can
associate an (i — 1)-maniplex Mg to each i-face F of M by identifying two
flags of F' whenever there is a path between them consisting of edges with
colours in {i + 1,...,n} (and then identifying any edges between each pair
of points if those edges have the same colour). Equivalently, we can remove
from F all edges of colours {i+1,...,n}, and then take one of the connected
components. In fact, since (rg,...,r;—1) commutes with (r;y1,...,7r,), the
connected components of this subgraph of F' are all isomorphic, so it does
not matter which one we pick.

If ® is a flag of M that contains the i-face F', then it naturally induces a
flag ® in Mp. Similarly, if ¢ € Aut(M) fixes F, then ¢ induces an automor-
phism @ € Aut(Mr), defined by ®p = ®¢. To check that this is well-defined,
suppose that ® = ¥; we want to show that ®p = Wy. Since ® = U, it follows
that ¥ = ®" for some w € (rit1,...,7y). Then Pp = (V)¢ = (D)™, so
that W = .

By definition, the edges of G of one given colour form a perfect matching.
The 2-factors of the graph G are the subgraphs spanned by the edges of two
different colours of edges.

Since the automorphisms of M preserve the adjacencies between the
flags, it is not difficult to see that the following lemma holds.

Lemma 1. Let @ be a flag of M and let a € Mon(M). If O1 and Oy denote
the flag orbits of ® and ®* (under Aut(M)), respectively, then ¥ € Oy if
and only if ¥* € O,.

We say that a maniplex M is i-face-transitive if Aut(M) is transitive on
the faces of rank i. We say that M is fully-transitive if it is i-face-transitive
for every i =0,...,n.

If Aut(M) has k orbits on the flags of M, we say that M is a k-orbit
maniplex. A 1-orbit maniplex is also called a reflexible maniplex. A 2-orbit
maniplex with adjacent flags belonging to different orbits is a chiral maniplex.
If a maniplex has at most 2 orbits of flags, and if its graph G is a bipartite
graph such that each part is contained in an orbit, then the maniplex is said
to be rotary.

As it should be clear, it makes no difference whether we consider an
abstract n-polytope or an (n — 1)-maniplex. Hence, though we will consider
maniplexes throughout the paper, similar results will apply to polytopes.
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3. Symmetry type graphs of polytopes and maniplexes

In this section we shall define the symmetry type graph of a maniplex. To this
end, we shall make use of quotients of graphs. Therefore, we now consider
pregraphs; that is, graphs that allow multiple edges and semi-edges.

Given an edge-coloured graph G, and a partition B of its vertex set V,
the coloured quotient with respect to B, Gg, is defined as the pregraph with
vertex set B, such that for any two vertices B,C € B, there is an edge of
colour a from B to C if and only if there exists u € B and v € C such that
there is an edge of colour a from u to v. Edges between vertices in the same
part of the partition B quotient into semi-edges (edges with exactly one end
point).

Throughout the remainder of this section, let M be an (n—1)-maniplex
and G, its coloured flag graph.

As we discussed in the previous section, Aut(M) acts semiregularly on
the vertices of Gnq. We shall consider the orbits of the vertices of Goq under
the action of Aut(M) as our partition B, and denote B := Orb. Note that
since the action is semiregular, every two orbits B,C € Orb have the same
number of elements. The symmetry type graph T(M) of M is the coloured
quotient graph of Guq with respect to Orb.

Since the flag graph G, is an undirected graph, then T (M) is a pre-
graph without loops or directed edges. Furthermore, as we are taking the
coloured quotient, and G4 is edge-coloured with n colours, Lemma 1 implies
that T'(M) is an n-valent pre-graph, with one edge or semi-edge of each colour
at each vertex. It is hence not difficult to see that if M is a reflexible maniplex,
then T (M) is a graph consisting of only one vertex and n semi-edges, all
of them of different colours. In fact, the symmetry type graph of a k-orbit
maniplex has precisely k vertices. Given vertices u, v of T'(M), if there is an
i-edge joining them, we shall denote that edge as (u,v);, and we may denote
v by . Similarly, (v, v); shall denote the semi-edge of colour i incident to the
vertex v. Figure 2 shows the symmetry type graph of a reflexible 2-maniplex
(on the left), and the symmetry type graph of the cuboctahedron: the quotient
graph of the flag graph in Figure 1 with respect to the automorphism group
of the cuboctahedron.

0 0 0

AN w

FIGURE 2. Symmetry type graphs of a reflexible 2-maniplex
(on the left) and of the cuboctahedron (on the right).

Note that by the definition of T'(M), there exists a surjective function
¥ V(Gm) = V(T(M))
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that assigns, to each vertex of V(Guq), its corresponding orbit in T'(M).
Hence, given ®, ¥ € V(Gaq), we have that ¢(®) = (V) if and only if ® and
U are in the same orbit under Aut(M).

Fix a base flag ® of M and let N = Stabyon () () and N = Normyonag) (V).
Then there is a bijection between the cosets of A/ in Mon(M) and the set of
orbits Orbd, given by sending each N'w to the orbit of ®* (see [11]). Therefore,
T (M) is isomorphic to the graph of cosets of A in Mon(M) with respect to
the generating set rg,r1,...,7,. That is, T (M) is isomorphic to the graph
whose vertices are the cosets of AV in Mon(M), where there is an edge of
colour i between two cosets Nw and Nv whenever Nv = Nwr;.

Because of Lemma 1, we can define the action of Mon(M) on the vertices
of T(M). In fact, given v € T(M) and a € Mon(M), then v* := ¢(P*), for
any ® € ¢~1(v). Since Mon(M) is transitive on the vertices of G, then it is
also transitive on the vertices of T (M), implying that T(M) is a connected
graph. Furthermore, the action of each generator r; of Mon(M) on a vertex
v of T (M) corresponds precisely to the (semi-)edge of colour ¢ incident to v.
Hence, if we pick any flag ¥ € 1)~!(v) and look at the set of flags that contain
the same i-face F' as ¥ does, the image of this set under v will be the orbit
of v under (r; | j # i). Therefore, the connected components of the subgraph
T (M) of T(M) with edges of colours in {0, ...,n—1}\{i} correspond to the
orbits of the i-faces under Aut(M). In particular this implies the following
proposition.

Proposition 1. Let M be a maniplex, with symmetry type graph T(M). Let
T (M) be the subgraph of T(M) obtained by erasing the i-edges of T(M).
Then M is i-face-transitive if and only if T*(M) is connected.

In light of Proposition 1, we say that a symmetry type graph T is i-
face-transitive if 7% is connected, and that T is a fully-transitive symmetry
type graph if it is i-face-transitive for all 7.

Recall that to each i-face F' of M, there is an associated (¢ —1)-maniplex
M. The symmetry type graph T (M) is related in a natural way to the
connected component of T%(M) that corresponds to F:

Proposition 2. Let F' be an i-face of the maniplex M, and let Mg be the cor-
responding (i —1)-maniplez. Let C be the connected component of T*(M) cor-
responding to F'. Then there is a surjective function 7 : V(C) — V(T (Mp)).
Furthermore, if j < i then each j-edge (u,u’); of C yields a j-edge or j-semi-
edge (m(u),m(u?)); in T(Mp) (and each j-semi-edge induces a j-semi-edge),
and if j > i, then m(u) = 7(u?).

Proof. First, let ® and ¥ be flags of M that are both in the connected com-
ponent corresponding to F', and suppose that they lie in the same flag orbit,
so that U = Py for some ¢ € Aut(M). Then the induced automorphism @
of My sends ® to U, and therefore ® and ¥ lie in the same orbit. Further-
more, every flag of M is of the form ® for some ® in F. Thus, each orbit
of M that intersects F' induces an orbit of Mg, and it follows that there is
a surjective function 7 : V(C) = V(T(Mp)).
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Consider an edge (or semi-edge) (u,u?); in C. Then u = 1(®P) for some
flag ® in F', and we can take v/ = ¢(®7). Both ® and ®? induce flags in Mp.
If j < i, then ® = & . Therefore, there must be a j-edge (or j-semi-edge)
from the orbit of ® to the orbit of ®7; in other words, a j-edge (or j-semi-
edge) from 7(u) to 7(u?). On the other hand, if j > 4, then ® = &, and so
@ and ®7 lie in the same orbit and thus 7(u) = 7(u’). O

Note that the (semi-)edges of a given colour i of T'(M) form a perfect
matching (if we consider a semi-edge to match a vertex to itself). Given two
colours 7 and j, the subgraph of T (M) consisting of all the vertices of T'(M)
and only the - and j-(semi)-edges shall be called an (4, j) 2-factor of T'(M).
Because ;7 = r;7; whenever |[i — j| > 2, in Gaq, the alternating cycles of
colours ¢ and j have length 4. By Lemma 1 each of these 4-cycles should then
factor, in T'(M), into one of the five graphs in Figure 3. Hence, if |i — j| > 2,
then the connected components of the (i, ) 2-factors of T'(M) are precisely
among these graphs.

N O N K

FI1GURE 3. Possible quotients of i — j coloured 4-cycles.

In light of the above observations we state the following lemma.

Lemma 2. Let T(M) be the symmetry type graph of a maniplex. If there
are three distinct vertices u,v,w € V(I'(M)) such that (u,v);, (v,w); €
E(T(M)) with |i—j| > 2, then the connected component of the (i,j) 2-factor
that contains v has four vertices.

4. Symmetry type graphs of highly symmetric maniplexes

One can classify maniplexes with a small number of flag orbits (under the
action of the automorphism group of the maniplex) in terms of their symme-
try type graphs. Furthermore, given a symmetry type graph, one can read
from the appropriate coloured subgraphs the different types of face transi-
tivities that the maniplex has. To determine the possible symmetry types of
a k-orbit (n — 1)-maniplex, we need only consider connected, n-valent pre-
graphs on k vertices such that they are properly n-edge-colourable, and such
that whenever |i — j| > 2, the connected components of the 2-factors with
colours 7 and j are one of the possibilities in Figure 3. Note, however, that
it is unclear whether any pre-graph that satisfies these necessary conditions
actually occurs as the symmetry type graph of a k-orbit (n — 1)-maniplex.
As pointed out before, the symmetry type graph of a reflexible (n — 1)-
maniplex consists of one vertex and n semi-edges. The classification of two-
orbit maniplexes in terms of the local configuration of their flags follows
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immediately from the possible symmetry type graphs. In fact, for each n,
there are 2™ — 1 possible symmetry type graphs with 2 vertices and n (semi)-
edges, since given any proper subset I of the colours {0,1,...,n—1}, there is
a s graph with two vertices, |I| semi-edges corresponding to the colours of I
incident to each vertex, and where all the edges between the two vertices use
the colours not in I (see Figure 4). This symmetry type graph corresponds
precisely to polytopes in class 2; (see [10]).

Ic{0,1,...,n—1}, J={0,1,...,n—1}\ I
FIGURE 4. The symmetry type graph of a maniplex in class 2;.

Highly symmetric maniplexes can be regarded as those with few flag
orbits or those with many face transitivities. In [4] one can find the complete
list of possible symmetry type graphs of 2-maniplexes with at most 5 vertices.
In this section we classify the possible symmetry type graphs with 3 vertices
(in any rank) and study some properties of symmetry type graphs of 4-orbit
maniplexes and fully-transitive 3-maniplexes.

4.1. Symmetry type graphs of 3-orbit maniplexes

Here we will describe all possible symmetry type graphs of 3-orbit maniplexes
and determine for which ranks j they are j-face-transitive.

Proposition 3. The symmetry type graph of a 3-orbit maniplex of rankn —1
is of one of the forms in Figure 5. In particular, there are 2n — 3 different
possible symmetry type graphs of 3-orbit maniplexes of rank n — 1.

Proof. Let M be a 3-orbit (n — 1)-maniplex and T(M) its symmetry type
graph. Then, T (M) is an n-valent properly edge-coloured graph with vertices
v1,vg and vz. Recall that the set of colours {0,1,...,n — 1} correspond to
the distinguished generators rq,r1,...,7m,_1 of the connection group of M,
and that by (u,v); we mean the edge between vertices u and v of colour 4.

Since T(M) is a connected graph, without loss of generality, we can
suppose that there is at least one edge joining vy and vo and another joining
vy and vs. Let j, k € {0, 1,...,n—1} be the colours of these edges, respectively.
That is, without loss of generality we may assume that (v1,v2); and (ve, v3)k
are edges of T'(M). By Lemma 2, we must have that k = j + 1, as otherwise
T (M) would have to have at least 4 vertices. This implies that, up to graph
isomorphism, the only edges of T(M) are either (vi,vs); and (ve,vs)j4+1,
(Ul,’Ug)j and (’UQ,’Ug)j_l or (1]1,1}2)]‘, (UQ,Ug)j+1 and (UQ, 1}3)j_1, with ] S
{1,2,...,n — 2} (see Figure 5).

An easy computation now shows that there are 2n — 3 possible different
symmetry type graphs of 3-orbit maniplexes of rank n — 1. (]
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J J
J J J J
&u W’U % &u WU %7
j i i+l i | g+ J
j+1

4+ 1 .
J j+1

J
J J
U é w
J i
j+1 J

j+1

FIGURE 5. Possible symmetry type graphs of 3-orbit (n—1)-
maniplexes with edges of colours j — 1, 7, and j + 1, with
je{1,2,...,n—2}.

Given a 3-orbit (n — 1)-maniplex M with symmetry type graph having
exactly two edges e and e’ of colours j and j + 1, respectively, for some
7 €{0,...,n—2} (as in the upper two graphs of Figure 5), we shall say that
M is in class 3771, If, on the other hand, the symmetry type graph of M
has edges of colours j — 1, j, and j + 1, such that the edges of colours 7 — 1
and j+ 1 are parallel (as in the lower graph of Figure 5), then we say that M
is in class 3. From Figure 5 and Proposition 1, we observe that a maniplex
in class 37711 is i-face-transitive whenever i # 7,j + 1, while a maniplex in
class 37 is i-face-transitive for every i # j. From here, we have the following
results.

Proposition 4. A 3-orbit maniplex is j-face-transitive if and only if it does
not belong to any of the classes 37, 3531 or 39—1J,

Theorem 1. There are no fully-transitive 3-orbit maniplexes.

Using Proposition 2, we get some information about the number of flag
orbits that the j-faces have:

Proposition 5. A 3-orbit maniplex in class 37 or 39711 has reflexible j-faces.

Proof. If M is a 3-orbit maniplex, then the orbits of the j-faces correspond
to the connected components of T7(M). Assuming that M is in class 37 or
37:9+1 the graph T7(M) has two connected components; an isolated vertex,
and two vertices that are connected by a (j+1)-edge (and a (j—1)-edge, if M
is in class 377*1). Then by Proposition 2, the j-faces that correspond to the
isolated vertex are reflexible (that is, 1-orbit), and the edge with label j + 1
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forces an identification between the two vertices of the second component, so
the j-faces in that component are also reflexible. (I

4.2. On the symmetry type graphs of 4-orbit maniplexes

It does not take long to realise that counting the number of possible symmetry
type graphs with & > 4 vertices, and perhaps classifying them in a similar
fashion as was done for 2 and 3 vertices, becomes considerably more difficult.
In this section, we shall analyse symmetry type graphs with 4 vertices and
determine how far a 4-orbit maniplex can be from being fully-transitive. We
start with a simple lemma.

Lemma 3. Let M be a 4-orbit (n — 1)-maniplex and let i € {0,...,n — 1}.
Then M has one, two or three orbits of i-faces.

Proof. By Proposition 1, the number of orbits on i-faces is equal to the
number of connected components of T%(M). Since T(M) is connected, and
it has at most two edges of colour 4, it follows that 7%(M) has at most three
connected components.

O

If an (n — 1)-maniplex M is not fully-transitive, there exists at least
one i € {0,...,n — 1} such that 7%(M) is disconnected. We shall divide
the analysis of the types in three parts: when T?(M) has three connected
components (two of them of one vertex and one with two vertices), when
T%(M) has a connected component with one vertex and another connected
component with three vertices, and finally when T%(M) has two connected
components with two vertices each. Let vy, vy, v3,v4 be the vertices of T'(M).

Suppose that T¢(M) has three connected components with v, and v3 in
the same component. Without loss of generality we may assume that T'(M)
has edges (v1,v2); and (vs,vs);. Let k € {0,1,...,n — 1} \ {i¢} be the colour
of an edge between vy and vs. Since there is no edge of T(M) between vy
and v4, Lemma 2 implies that there are at most two such possible k, namely
k=i—land k=i+1.Ifi ¢ {0,n — 1}, T(M) can have either both edges
or exactly one of them, while if ¢ € {0,n — 1} there is one possible edge (see
Figure 6).

Let us now assume that T%(M) has two connected components, one
consisting of the vertex v; and the other one containing vertices vy, v3 and
v4. This means that the i-edge incident to v; is the unique edge that connects
this vertex with the rest of the graph and, without loss of generality, 7'(M)
has the edge (v1,v2);. As with the previous case, Lemma 2 implies that an
edge between vy and vz has colour either i — 1 or 7 + 1.

First observe that having either (va,v3);—1 or (v2,v3);41 in T (M) imme-
diately implies (by Lemma 2) that there is no edge between vy and vs. Now,
if both edges (va,v3);—1 and (ve,vs);+1 are in T(M), then an edge between
vz and v, would have to have colour 4, contradicting the fact that T¢(M) has
two connected components. Hence, there is exactly one edge between vo and
v3. It is now straightforward to see that 7'(M) should be one of the graphs
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J={01,....n—1}\{i—1,4,i+1}
FIGURE 6. Symmetry type graphs of an (n — 1)-maniplex

M with four orbits on its flags, and three orbits on its i-faces.

in Figure 7, implying that there are four possible symmetry type graphs with
these conditions for each i # 0,1,n — 2,7 — 1, but only two symmetry type
graph of this kind when i =0,1,n — 2, or n — 1.

i+ 1

J={0,1,....n—1}\{i—2,i—1,i} J={0,1,...,n— 13\ {é,i+1,i +2}

FIGURE 7. Symmetry type graphs of (n—1)-maniplexes with
four orbits on its flags, and two orbits on its i-faces such that
one contains three flag orbits and the other contains a single
flag orbit.

It is straightforward to see from Figure 7 that the next lemma follows.

Lemma 4. Let M be a 4-orbit (n—1)-maniplex with two orbits of i-faces such
that T*(M) has a connected component consisting of one vertex, and another
one consisting of three vertices. Then either T""1(M) or T*+1(M) has two
connected components, each with two vertices.

Finally, we turn our attention to the case where T¢(M) has two con-
nected components, with two vertices each. Suppose that v; and ve belong
to one component, while v3 and vy belong to the other. As the two compo-
nents must be connected by edges of colour ¢, we may assume that (v1,v3);
is an edge of T(M). If the vertices vo and v4 have semi-edges of colour i,
Lemma 2 implies that T (M) is one of the graphs shown in Figure 8. Note
that if © € {0,n — 1} there is one possible symmetry type graph for this
particular case.
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FIGURE 8. Six of the symmetry type graphs of (n — 1)-
maniplexs with four orbits on its flags, and two orbits on
its i-faces such that each contains two flag orbits.
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On the other hand, if (v1,v3); and (va,vy4); are both edges of T(M),
given j € {0,1,...,n—1}\{i—1,4,i4+ 1}, we use again Lemma 2 to see that
(v1,v2); is an edge of T (M) if and only if (vs,v4); is also an edge of T'(M).
By contrast, T'(M) can have either four semi-edges, an edge and two semi-
edges, or two edges of colour i £1 (each joining the vertices of each connected
component of T%(M)). Hence, if i # 0,n — 1, for each J C {0,1,...,n—1}\
{i — 1,4,7 + 1} there are ten possible symmetry type graphs with four semi-
edges of each of the colours in J and edges of colours not in J, as shown in
Figures 9 and 10, while for J = {0,1,...,n — 1} \ {i — 1,4,¢ + 1} there are
six such graphs (shown in Figure 10). On the other hand if ¢ € {0,n — 1}, for
each J C {0,1,...,n—1}\{¢—1,i,i+ 1} there are two graphs as in Figure 9
and one as in Figure 10, while for J = {0,1,...,n—1}\ {i —1,4,4+ 1}, there
is only one of the graphs in Figure 10.

Theorem 2 summarizes our analysis of the transitivity of 4-orbit mani-
plexes. In particular, case one holds if and only if T(M) does not belong to
any of the Figures 6 to 10. Moreover, case two holds if and only if T (M) is
either the graph in the middle of Figure 6, the graph in the middle in the
first row of Figure 8, or any of the possible symmetry type graphs in Figures
9 and 10, whenever J C {0,1,...,n — 1} \ {i — 1,4,% + 1}. Similarly, case
four holds if and only if T'(M) is the graph in the middle of the second row
of Figure 8. Finally, case three holds for all other possible choices of T'(M)
(depicted in the first and third graphs of Figure 6, all graphs in Figure 7 and
four of the six graphs in Figure 8).
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i+ 1 i+1
1+ 7 (= 7

0+#Jc{o1,..., n—1}\ {i—1,i,1+1},

FI1GURE 9. Four families of possible symmetry type graphs
of (n — 1)-maniplexes with four orbits on its flags, and two
orbits on its i-faces such that each contains two flag orbits.

i+1

FiGURE 10. The remaining six families of possible symme-
try type graphs of (n — 1)-maniplexes with four orbits on its
flags, and two orbits on its i-faces such that each contains

two flag orbits.

Theorem 2. Let M be a 4-orbit maniplex. Then, one of the following holds.

1. M is fully-transitive.
2. There exists i € {0,...,n — 1} such that M is j-face-transitive for all

J#Fi
3. There exist i,k € {0,...,n—1}, i # k, such that M is j-face-transitive

for all j #1i,k.
4. There exists i € {0,...,n — 1} such that M is j-face-transitive for all

jFi,iE£1.
4.3. On fully-transitive n-maniplexes for small n.

Every 1-maniplex is reflexible and hence fully-transitive. Fully-transitive 2-
maniplexes correspond to fully-transitive maps. It is well-known (and easy to
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see from the symmetry type graph) that if a map is edge-transitive, then it
should have one, two or four orbits of flags. Moreover, a fully-transitive map
should be regular, a two-orbit map in class 2, 2¢, 27 or 25, or a four-orbit
map in class 4¢g, or 4, (see, for example, [4]).

When considering fully-transitive n-maniplexes, n > 3, the analysis be-
comes considerably more complicated. We deduce from [10] that there are
at most 2"*t! —n — 2 classes of fully-transitive 2-orbit n-maniplexes. By
Theorem 1, there are no 3-orbit fully-transitive n-maniplexes. Extending the
twenty-two possible symmetry type graphs of 4-orbit 2-maniplexes (see [4])
by adding (semi-) edges of colour 3 in such way that the (0,3) and (1,3)
2-factors are as in Figure 3, we note that there are twenty possible symmetry
type graphs of 4-orbit 3-maniplexes that are fully transitive. We show these
graphs in Figure 11.

Theorem 3. Let M be a fully-transitive 3-maniplex and let T (M) be its sym-
metry type graph. Then either M is reflexible or T(M) has an even number
of vertices.

Proof. On the contrary suppose that T (M) has an odd number of vertices,
different than 1. Whenever |[¢ — j| > 1, the connected components of the
(i,7) 2-factor of a symmetry type graph are as in Figure 3. Hence, there is a
connected component of the (0,2) 2-factor of T'(M) with exactly one vertex
v (and, hence, semi-edges of colours 0 and 2). The connectivity of T'(M)
implies that there is a vertex vy adjacent to v in T'(M).

If v; is the only neighbour of v, then T'(M) has the edges (v,v1); and
(v,v1)3 as otherwise M is not fully-transitive. Since the connected compo-
nents of the (0,3) 2-factor of T(M) are as in Figure 3, v; has a 0 coloured
semi-edge. Because T' (M) has more than two vertices, the edge of v; of colour
2 joins v to another vertex, say u. But removing the edge (v1, u)s disconnects
the graph, contradicting the fact that M is 2-face-transitive.

On the other hand, if v has more than one neighbour it has exactly two,
say v; and u, and T (M) has the two edges (v,v1); and (v,u)s. This implies
that the connected component of the (1,3) 2-factor containing v has four
vertices: v, vy, u and vo. (Therefore (v1,v9)3 and (u, vy); are edges of T(M).)
Using the (0, 3) 2-factor one sees that u has a semi-edge of colour 0.

Now, if (v1,v2)0 is an edge of T'(M) or there are semi-edges coloured 0
at v and ve, then the vertices v, v1, v and w are joined to the rest of T (M)
only by the edges of colour 2, implying that removing them disconnects 7'(M)
(there exists at least another vertex in T'(M) since it has an odd number of
vertices), which is again a contradiction. On the other hand, if v; (or v3) has
an edge of colour 0 to a vertex vs then, by Lemma 2, vy (or v1) has a 0-edge
to a vertex vy. Again, if (v3,v4)1 is an edge of T(M) or there are semi-edges
coloured 1 at vs and vy, since the number of vertices of the graph is odd,
removing the edges of colour 2 will leave only the vertices w,v,v1,...,v4 in
one component, which is a contradiction. Proceeding now by induction on the
number of vertices one can conclude that T'(M) cannot have an odd number
of vertices O
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FiGURE 11. Symmetry type graphs of 4-orbit fully-
transitive 3-maniplexes

5. Generators of the automorphism group of a k-orbit
maniplex

It is well-known among polytopists that the automorphism group of a regu-
lar n-polytope can be generated by n involutions. In fact, given a base flag
® € F(P), the distinguished generators of Aut(M) with respect to ® are
involutions pg, p1, - .., pPn—1 such that ®p; = o1,



18 G. Cunningham, M. del Rio, I. Hubard and M. Toledo

Generators for the automorphism group of a two-orbit n-polytope can
also be given in terms of a base flag (see [10]). In this section we give a set
of distinguished generators (with respect to some base flag) for the automor-
phism group of a k-orbit (n — 1)-maniplex in terms of the symmetry type
graph T(M).

Given two walks w1 and ws along the edges and semi-edges of T(M)
such that the final vertex of w; is the starting vertex of ws, we define the
sequence wyws as the walk that traces all the edges of w; and then all the
edges of wy in the same order; the inverse of w;, denoted by w; 1 is the
walk which has the final vertex of w; as its starting vertex, and traces all
the edges of w; in reversed order. Since each of the elements of Mon(M)
associated to the edges of T'(M) is its own inverse, we shall forbid walks that
trace the same edge two times consecutively (or just remove the edge from
such walk, shortening its length by two). Given a set W of walks in T'(M),
we say that a subset W C W is a generating set of W if each w € W can
be expressed as a sequence of elements of YW and their inverses. Now, let W
be the set of closed walks along the edges and semi-edges of T'(M) starting
at a distinguished vertex vg. Recall that the walks along the edges and semi-
edges of T'(M) correspond to permutations of the flags of M; moreover, each
closed walk of W corresponds to an automorphism of M. Thus, by finding a
generating set of W, we will find a set of automorphisms of M that generates
Aut(M). (However, the converse is not true, as an automorphism of M may
be described in more than one way as a closed walk of T'(M).)

Given T'(M), the standard way to generate W is to consider a spanning
tree T of T(M). For each edge e = (u,v) of T(M) not in T, we take as
a generator the unique closed walk that consists of e, followed by the path
from v to u in 7. Recall that if A/ is the normaliser of the stabiliser of a
base flag @, then we may view T'(M) as the coset graph of N with respect to
Mon(M). Viewing T'(M) this way, the closed walks we describe correspond
to the Schreier generators of A in Mon(M) with respect to the generating set
{ro,...r} (see for example [9]). In fact, the Schreier transversal corresponds
precisely to the paths in the spanning tree 7 that start at the vertex N.
Hence, the Schreier generators tr(fr)~! such that ¢ is in the transversal and
r=r;,1=0,...n correspond to the closed walks with at most one edge not
inT.

To have a standard presentation of the automorphism group of a ma-
niplex, given its symmetry type graph, the above generating set is not con-
venient. For this reason, we give an alternative way of finding a generating
set of closed walks, starting and finishing at a given vertex of the symmetry
type graph. This generating set in turns will give rise to Theorem 4.

Our construction for a generating set of W goes as follows:

Let M be a k-orbit maniplex of rank n—1 and let 7 be a spanning tree
of T(M). The sets of vertices and edges (and semi-edges) of T' (M) will be
denoted by V and FE, respectively. The set of edges of T will be denoted by
Er. Let C = (vg, €0, v1,€1,...,ex—1,V) be a walk along the edges of T that
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visits all the vertices in E. Note that if 7 is not a single path, then C will
visit some vertices in V' and trace some edges in E more than once. That is,
v; may be equal to v; for some i,j € {0, ...,k — 1}. Likewise, e; may be equal
to e; for some 4,j € {0,...,k — 1}. We shall now construct G(W) C W, a
generating set of W.

For each edge e € E'\ Er between vertices v; and v;, v; # vj, we shall
define the walk

Wj, j.e = ((0077)1)7 (1)171)2)7 ceey (’Uifla vi)v €, (/Ujvvjfl)a (/Ujfla’vj72)7 ceey (vlu UO))~

That is, we walk from vy to v; in E7 tracing the same edges as C, we take the
edge e, and then we walk back from v; to vy in E7 tracing the same edges
as C, but in reverse order. Let W; C W be the set of all such walks.

For each semi-edge s € E \ Er we shall define the walk w;;, =
((Uo, ’Ul), (1}1, Uz), ceey (’Uz'_l, ’Ui), S, (UZ‘, 'Ui—l)a (’Ui_l, ’Uz'_z), ceey (111, ’Uo)). That iS7 we
walk from vy to v; in E7 tracing the same edges as C, we take the semi-edge
s, and then we walk back from v; to vy in E7. Let W5 C W be the set of all
such walks.

We define G(W) = Wy UWs.

Lemma 5. With the notation from above, G(W) is a generating set for V.

Proof. We shall prove that any w € W can be expressed as a sequence of
elements of G(W) and their inverses. Let w € W be a closed walk along the
edges and semi-edges of T'(M) starting at vg. From now on, semi-edges will
be referred to simply as “edges”.

We shall proceed by induction over the number n of edges in E \ Er
visited by w. If w visits only one edge in E \ E, then w € G(W) or w™! €
G(W). Let us suppose that, if a closed walk along the edges of T'(M) visits m
different edges in E'\ E7, with m < n, then it can be expressed as a sequence
of elements of G(W) and their inverses.

Let w € W be a closed walk that visits exactly n edges in E'\ Er. Let
e € E\ Er be the last edge of E'\ Er visited by w, and let v, and v, be
the vertices incident to e. Without loss of generality we may assume that the
vertex v, was visited after v,. Let f be the edge that w visits just before e,
and let v. and v, be the vertices incident to f. That is, f = (v.,v,) (note
that f may or may not be in E7). Let wy € W be the closed walk that traces
the same edges (in the same order) as w until reaching f and then traces
the edges (va,Va—1), (Va—1,Va—2), -.,(v1,v0), and let we € W be the closed
walk that traces the edges (vo, v1), (v1,v2), ..., (Va—1, V) and then traces e and
continues the way w does to return to vy. It is clear that w; visits exactly
n — 1 edges in E \ E7 and that ws visits only one. By inductive hypothesis
both w; and wy can be expressed as a sequence of elements of G(W), and
therefore so does w since w = wjws. O

Let ® be a base flag of M that projects to the initial vertex of a walk
that contains all vertices of T'(M) of a symmetry type graph. Following the
notation of [12], given w € Mon(M) such that & is in the same orbit as ®
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(that is, w € Norm(Stab(®))), we denote by «,, the automorphism taking &
to . Moreover, if w = 7,4, ... 7;, for some iq,...9; € {0,...,n— 1}, then
we may also denote v, by o, i,....ij -

The following theorem gives distinguished generators (with respect to
some base flag) of the automorphism group of a maniplex M in terms of a
distinguished walk of T'(M), that travels through all the vertices of T'(M).
Its proof is a consequence of the previous lemma.

Theorem 4. Let M be a k-orbit n-maniplex and let T (M) its symmetry type
graph. Let T be a spanning tree for T(M). Suppose that vi,e1,v2,€a...,€q-1,7
is a distinguished walk that visits every vertex of T(M) tracing only edges
of T, with the edge e; having colour a;, for each i = 1,...q — 1. Let S; C
{0,...,n—1} be such that v; has a semi-edge of colour s if and only if s € S;.
Let B; j C {0,...,n — 1} be the set of colours of the edges between the ver-
tices v; and v; (with i < j) that are not in the distinguished walk and let
® € F(M) be a base flag of M such that ® projects to vi in T(M). Then,
the automorphism group of M is generated by the union of the sets

{aal7a27~~~;ai;Syaiyaiflwwaal | 1=1,...,k—1,s€ Si}7

and
{aal,ag,.‘.7ai7b,aj,aj,1,...,a1 ‘ Z?J e {17 . '7k - 1}?Z < .])b E Bl,]}

We note that, in general, a set of generators of Aut(M) obtained from
Theorem 4 can be reduced since there might be more than one element of
G (W) representing the same automorphism. For example, the closed walk w
through an edge of colour 2, then a 0-semi-edge and finally a 2-edge corre-
sponds to the element rorgre = 7o of Mon(M). Hence, the group generator
induced by the walk w is the same as that induced by the closed walk con-
sisting only of the semi-edge of colour 0.

The following two corollaries give a set of generators for 2- and 3-orbit
maniplexes, respectively, in a given class. The notation follows that of The-
orem 4, where if the indices of some « do not fit into the parameters of the
set, we understand that such automorphism is the identity.

Corollary 1. [11] Let M be a 2-orbit (n — 1)-maniplez in class 2y, for some
Ic{0,...,n—1} andlet jo ¢ I. Then

{ai, Qo igor o | 1 €L, k¢ T}
is a generating set for Aut(M), with respect to some base flag ®.

Corollary 2. Let M be a 3-orbit (n — 1)-maniplez.

1. If M is in class 3, for some i € {1,...,n—2}, and ® is a base flag of
M that projects to the vertex on the right of the corresponding graph in
Figure 5, then

{aj, iiot,i41,is Qisit1,g,i+ 1,0 Qisit 16,41, | J € {0,...,n— 13\ {i}}

is a generating set for Aut(M), with respect to the base flag ®.
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2. If M is in class 3%+ for some i € {0,...,n—2}, and ® is a base flag
of M that projects to the vertex on the right of the corresponding graph
in Figure 5, then

J€{0,...,n—1}\{i}}

is a generating set for Aut(M), with respect to the base flag ®.

{%‘7 Qi iy O it1,5,i+1,i5 O id1,4,5+1,4

6. Oriented and orientable maniplexes

A maniplex M is said to be orientable if its flag graph G4 is a bipartite
graph. Since a subgraph of a bipartite graph is also bipartite, all the sections
of an orientable maniplex are orientable maniplexes themselves. An orien-
tation of an orientable maniplex is a colouring of each part of Gnq with a
different colour, say black and white. An oriented maniplez is an orientable
maniplex with a given orientation. Note that any oriented maniplex M has
an enantiomorphic maniplex (or mirror image) M. One can think of the
enantiomorphic form of an oriented maniplex simply as the orientable mani-
plex with the opposite orientation.

If the connection group Mon(M) of M is generated by 7o, r1,. .., n—1,
for each i € {0,...,n — 2} let us define the element t; := r,,_17; € Mon(M).
Then, t? = 1, for i = 0,...n — 3. The subgroup Mon* (M) of Mon(M)
generated by tg,...t,_o is called even connection group of M. Note that
Mon™ (M) has index at most two in Mon(M). In fact (Mon™(M))™»—1 =
Mon™t(M*"). Tt should be clear then that any oriented maniplex and its
enantiomorphic form are in fact isomorphic as maniplexes.

An oriented flag di-graph Gaq™+ of an oriented maniplex M is constructed
in the following way. The vertex set of Ga" consists of one of the parts of
the bipartition of Gaq. That is, the black (or white) vertices of the flag graph
of M. The darts of Gy will be the 2-arcs of Gaq of colours n — 1,14, for each
i € {0,...,n—2}. We then identify two darts to obtain an edge if they have
the same vertices, but go in opposite directions. Note that for i =0,...,n—3
and each flag ® of M, the 2-arc starting at ® and with edges coloured n — 1
and i has the same end vertex than the 2-arc starting at ® and with edges
coloured ¢ and n — 1. Hence, all the darts corresponding to 2-arcs of colours
n—1 and 4, with i = 0,...n — 3 will have both directions in Gy" giving
us, at each vertex, n — 2 different edges. On the other hand, the 2-arcs on
edges of two colours n — 1,n — 2 will in general be directed darts of Ga,™.
An example of an oriented flag di-graph is shown in Firgure 6. We note that
the oriented flag di-graph of M°" can be obtained from Gyt by reversing
the directions of the n — 2, n — 1 darts.

Note that the 2-arcs of colours r,_1,r; correspond to the generators ¢;
of Mon™(M). In fact, as Mon™ (M) consists precisely of the even words of
Mon(M), a maniplex is orientable if and only if the index of Mon™ (M) in
Mon(M) is exactly two. We can then colour the edges and darts of G with
the elements ¢;. The fact that t? = 1 for every i = 0,...,n — 3 indeed implies
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F1GURE 12. The oriented flag di-graph of an oriented cuboc-
tahedron from its flag graph.

that the edges of GarT are labelled by these first n — 2 elements, while the
darts are labelled by t,_s.

We can see now that for each i € {0,...,n — 2}, the i-faces of M are in
correspondence with the connected components of the subgraph of Gy T with
edges of colours {0,...,n—2}\ {i}. To identify the facets of M as subgraphs
of Gmt, we first consider some oriented paths on the edges of Gat. We
shall say that an oriented path on the edges of Gaq™ is facet-admissible if no
two darts of colour ¢,,_o are consecutive on the path. Then, we will identify
vertices of Go™ with the same facet of M if there exists a facet admissible
oriented path from one of the vertices to the other.

For the remainder of this section, by a maniplex we shall mean an
oriented maniplex, with one part of the flags coloured with black and the
other one in white.

An orientation preserving automorphism of an (oriented) maniplex M is
an automorphism of M that sends black flags to black flags and white flags to
white flags. An orientation reversing automorphism is an automorphism that
interchanges black and white flags. A reflection is an orientation reversing in-
volutory automorphism. The group of orientation preserving automorphisms
of M shall be denoted by Aut™*(M).

The orientation preserving automorphism Aut™ (M) of a maniplex M
is a subgroup of index at most two in Aut(M). In fact, the index is exactly
two if and only if Aut(M) contains an orientation reversing automorphism.
Note that in this case, there exists an orientation reversing automorphism
that sends M to its enantiomorphic form M®".

Pisanski [18] defines a maniplex to be chiral-a-la-Conway if Aut™ (M) =
Aut(M). If a maniplex M is chiral-a-la-Conway, then its enantiomorphic
maniplex M®" is isomorphic to M, but there is no automorphism of the
maniplex sending one to the other. It follows from the definition that M
is chiral-a-la-Conway if and only if all automorphisms of M preserve the
bipartition of G4 and therefore we have the following proposition.

Proposition 6. Let M be an oriented maniplex and let T(M) its symmetry
type graph. Then, M is chiral-a-la-Conway if and only if T(M) has no odd
cycles or semi-edges.
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Similarly as before, the orientation preserving automorphisms of a ma-
niplex M correspond to colour preserving automorphism of the bipartite
graph G that preserves the two parts. But these correspond to colour pre-
serving automorphisms of the di-graph G, implying that Aut™ (M) =
Aut,(Gam™). Note that the action of Aut* (M) on the set B(M) of all the
black flags of M is semiregular, and hence, the action on Aut,(G M) s
semiregular on the vertices of Ga™.

An oriented maniplex M is said to be rotary (or orientably reqular) if
the action of Aut™ (M) is regular on on the vertices of GosT. Equivalently,
M is rotary if the action of Aut,(Ga™) is regular on its vertices. We say
that M is orientably k-orbit if the action of Aut,(Gum ™) has exactly k orbits
on the vertices. The following lemma is straightforward.

Lemma 6. Let M be a chiral-a-la-Conway maniplex. Then T(M) has no
semi-edges, and if M is an orientably k-orbit maniplex, then M is a 2k-orbit
maniplez.

6.1. Oriented symmetry type di-graphs of oriented maniplexes

We now consider the semiregular action of Aut™ (M) on the vertices of Gaq™,
and let B = Orbt be the partition of the vertex set of Go+ into the orbits
with respect to the action of Aut™(M). (As before, since the action is semireg-
ular, all orbits are of the same size.) The oriented symmetry type di-graph
T+ (M) of M is the quotient coloured di-graph of G with respect to Orb™.
Similarly as before, if M is rotary, then the oriented symmetry type di-graph
of M consists of one vertex with one loop and n — 2 semi-edges. Note that
for oriented symmetry type di-graphs we shall not identify two darts with
the same vertices, but different directions.

If we now turn our attention to oriented symmetry type di-graphs with
two vertices, one can see that for each I C {0,...,n —2}, there is an oriented
symmetry type di-graph with two vertices having semi-edges (or loops) of
colours i at each vertex for every i € I, and having edges (or both darts) of
colour j, for each j ¢ I. An oriented maniplex with such oriented symmetry
type di-graph shall be said to be in class 2;. Hence, there are 2"~2—1 possible
classes of oriented 2-orbit (n — 1)-maniplexes.

Note that if M is a k-orbit maniplex, then 7" (M) has either k or £
vertices. The next result follows from Proposition 6 and Lemma 6.

Theorem 5. Let M be an oriented maniplex. Then, T(M) and T+ (M) have
the same number of vertices if and only if T(M) has a semi-edge or an odd
cycle.

It is not difficult to see that if we are to consider for a moment an
oriented symmetry type di-graph T+, then the construction of Section 5 gives
us a way to construct a generating set of the oriented closed walks based at
the starting vertex of a oriented path containing all vertices (and Lemma 5
implies that the set actually generates.) Hence, one can find generators for
the group of orientation preserving automorphisms of an oriented maniplex.
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In particular we have the following theorem. Note that, in a similar fashion
as before, we omit writing all generators obtained from Lemma 5, as many
of them act in fact in the same fashion (for example, we do not include
On—2n—1,i;n—1n—1,n—2 a8 it is the same as automorphism as a,—2 n—1,i,n—2-)

Theorem 6. Let M be an oriented 2-orbit (n — 1)-maniplex in class 27, for
some I C {0,...,n—2}. Then

1. Ifn—2¢€1, let jo ¢ I, then
{@in—1, % n—1ijos Wkin—1jon—1 |1 €L k ¢ I}

is a generating set for Aut™(M).
2. If n—2 ¢ I but there exists jo ¢ I, jo #n — 2, then

{ai,n—la Qjo.n—1,i,j0r Xk,n—1,jo,n—15 n—1,n—-2,j0,n—1, n—1,n—2,n—1,n—2 | 1elk ¢ I}

is a generating set for Aut™(M).
3. If 1 =A0,...,n — 3}, then

{Qin—1,0n—2n—1,im-1n—2,n—1, -1 n—2n-1n—2 | i €I}
is a generating set for Aut™(M).

Given an oriented maniplex M and its symmetry type graph 7'(M), we
shall say that TF (M) is the associated oriented symmetry type di-graph of
T(M). Hence, given a symmetry type graph T one can find its associated
oriented symmetry type di-graph T by erasing all edges of 1" and replacing
them by the n — 1,4 paths of T'. Note that this replacement of the edges may
disconnect the new graph. If that is the case, we take T to be one of the
connected components.

6.2. Oriented symmetry type graphs with three vertices

In a similar way as one can classify maniplexes with small number of flag
orbits (under the action of the automorphism group of the maniplex) in
terms of their symmetry type graph, one can classify oriented maniplexes
with small number of flags (under the action of the orientation preserving
automorphism group of the maniplex) in terms of their oriented symmetry
type di-graph.

We will now classify maniplexes with oriented symmetry type di-graphs
with 3 vertices. Let M be a 6-orbit Chiral-a-la-Conway (n—1)-maniplex, with
n > 4. Let T(M) be its symmetry type graph and T (M) be its oriented
symmetry type di-graph. Recall that T(M) is a graph with 6 vertices and
no semi-edges or odd cycles, and that T+ (M) is a di-graph with 3 vertices.
Let V = {v1,v2,..,v6} be the vertex set of T'(M). We may label the vertices
of T (M) in such a way that the edges (v1,v2), (v3,v4), (vs,v6) are coloured
with the colour (n — 1), and that the set {v1,vs,v5} constitutes one part of
the bipartition. Let W = {w1,ws,ws} be the vertex set of T (M). Each
w; € W corresponds to the vertex v; € Vi € {1,3,5}. In what follows, in
the same way as in Section 3, (v;,v;)r denotes the k-coloured edge joining
the vertices v; and v;, v;,v; € V, k € {0,1,...,n — 1); and (w;, w;), denotes
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the (k,n — 1)-coloured edge joining the vertices w; and w;, w;, w; € W and
ke{0,1,..,n—3).

Since there are no semi-edges in T'(M), for each colour i € {0, ...,n — 3}
there is one edge (and one semi-edge) of colour (i,m — 1) in T+ (M) if and
only if the 2-factor of T'(M) of colours ¢ and (n — 1) consists of one 4-cycle
and one 2-cycle of alternating colours. Likewise, there are three semi-edges
of colour (i,n — 1) in T (M) if and only if the 2-factor of T'(M) of colours
i and (n — 1) consist of three 2-cycles. It is straightforward to see that there
are two consecutive edges of colour (i,n—1) and (j,n—1),1 # j, 4,5 <n—3,
in TT(M) if and only if the 2-factor of colours ¢ and j consists of a single
6-cycle. It follows that if there are two consecutive edges of colour (i,n — 1)
and (j,n —1) in TT (M), then |i — j| < 2.

Notice that the possible 2-factors of colour (n—1) and (n—2) in T'(M)
are either a single 6-cycle of alternating colours, a 4-cycle along with a 2-
cycle, or three separate 2-cycles. Hence, the darts in TF (M) are arranged
in either a 3-cycle, a 2-cycle along with a loop, or three separate loops. We
proceed case by case.

Consider the case when there are three loops in TF(M). Since ori-
ented symmetry type di-graphs are connected, then without loss of gener-
ality (w1, ws3); and (w3, ws);+1 must be edges of T (M). We may suppose
that (wq,ws); is the only edge joining w; and ws. If there is a third edge in
T+ (M), then it is necessarily (w3, ws);—1. Note that, since the edges coloured
by (n—1) and (n—2) do not lie on a 6-cycle in T'(M), there can be semi-edges
of colour 0,1, ...,n — 3 in TT(M). Thus, there is one oriented symmetry type
di-graph for each pair of colours 7 and i 4+ 1, with ¢ € {0,...,n — 3} and one
for each triple i — 1, 4 and i+ 1, i € {1,...,n — 3}. Therefore, there are 2n —7
oriented symmetry type di-graphs with 3 loops.

Consider the case when Tt (M) has only one loop. We may suppose
that the loop is in ws and the vertices wy and ws are joined by darts. This
implies that (v1,v4)(n—2), (V2,v3)m—2) and (vs,ve)m—2) are edges of T'(M).
As T+(M) is connected, there must be an edge joining ws and ws of colour
(i,n—1). Necessarily i = n—3, since the edges (v1,v2)s, (v2,v3)(n—2), (v3,V6)s,
(v, V5)n—2, (V5,04)i, (V4,v1)p—2 form a 6-cycle in T(M). Hence, there are
exactly two oriented symmetry type di-graph with a single loop: one with a
single edge of colour (n—3,n— 1) between ws and ws, and one with one edge
of colour (n—3,n—1) between ws and ws, and one edge coloured (n—4,n—1)
between w; and ws.

Consider the case when the darts in 7 (M) are arranged in a 3-cycle.
It is clear that the 2-factor of T'(M) of colours (n —2) and (n — 1) is a single
6-cycle. Therefore, if i € {0, ...,n — 4}, the 2-factor of T'(M) of colours i and
(n—1) cannot consist of three 2-cycles, as this implies the existence of a 6-cycle
of alternating colours 4 and (n—2) with |i — (n — 2)| > 2. That is, T (M) has
one edge (and one semi-edge) of colour (i,n—1) for each i € {0,...,n—4} and
either one edge and a semi-edge, or three semi-edges for colour (n—3,n—1).
Note that if n > 7, the set {0,...,n — 4} has more than three elements and
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thus all edges of colour (i,n—1) in Tt (M), i € {0, ...,n—4}, must be joining
the same pair of vertices. Otherwise, there would be at least two consecutive
edges of colours (i,n — 1) and (j,n — 1), with |¢ — j| > 2. Figure 6.2 below
shows the only four possible oriented symmetry type di-graphs with a 3-cycle
of darts and at least two consecutive edges. Two correpond to 4-maniplexes,
one to 3-maniplexes and one to 5-maniplexes. (We note that as 2-maniplexes
can be regarded as polygons, then they are always 1-orbit maniplexes.)

FiGURE 13. Oriented symmetry type di-graphs with 3 ver-
tices and one directed 3-cylce, of 3-, 4- and 5-maniplexes

We may now suppose that T+ (M) has no consecutive edges. It follows
that here are exactly two oriented symmetry type di-graph with a 3-cycle
of darts: one with an edge joining the same pair of vertices for each colour
i € {0,...,n — 3}, and one with three semi-edges of colour (n — 3,n — 1) and
an edge joining the same pair of vertices for each colour ¢ € {0,...,n — 4}.

Considering all the cases above, there are (n—3)+(n—4)4+2+42 = 2n—3
oriented symmetry type graphs with three vertices for oriented maniplexes
of rank n > 6; 2n — 2 = 6 for oriented maniplexes of rank 3; 2n — 1 =9 for
oriented maniplexes of rank 4; and 2n—2 = 10 for oriented maniplexes of rank
5. Of course, given an orientable polytope, there are two possible oriented
symmetry type graphs of the polytope, depending on the orientation. There
two graphs will only depend on the orientation of the arcs.

Acknowledgments

We would like to thank Gareth Jones and one of the anonymous referees for
realising that symmetry type graphs can be seen as coset graphs and pointing
out Schreier generators. And the two anonymous referees for the comments
that helped us improved this paper.

This work was done with the support of “Programa de Apoyo a Proyec-
tos de Investigacion e Innovacién Tecnolégica (PAPIIT) de la UNAM, IB101412
RR181412 Grupos y grdficas asociados a politopos abstractos’. The second au-
thor was also partially supported by Slovenian Research Agency (ARRS) and
the third author by CONACyT under project 166951 and by the program



Symmetry Type Graphs of Polytopes and Maniplexes 27

“Para las mujeres en la ciencia L’Oreal-UNESCO-AMC”. The completion of
this work was done during a visit of the second author to the Instituto de
Matematicas, UNAM, which was supported by PAPIIT under the project
IN106811.

References

[1] Brinkmann, G., Van Cleemput, N., Pisanski, T. Generation of various classes
of trivalent graphs. Theoretical Computer Science. (2012). DOI: 10.1016/j.tcs
2012.01.018

[2] Coxeter, H.S.M, Moser, W.0O.J.: Generators and relations for discrete groups.
Springer-Verlag. Berlin, Gottigen, Heidelberg (1957).

[3] Del Rio-Francos, M. Truncation symmetry type graphs. Submitted.

[4] Del Rio-Francos, M., Hubard I., Orbanic A., Pisanski T. Medial symmetry type
graphs. The Electronic Journal of Combinatorics 20 (3) (2013) #P29.

[5] Delgado Friedrichs, O., Huson, D. H. Tiling space by Platonic solids. I. Discrete
Comput. Geom. 21 (2) (1999) 299315.

[6] Dress, A. W. M. Presentations of discrete groups, acting on simply connected
manifolds, in terms of parametrized systems of Coxeter matrices. Adv. in Math.
63 (2) (1987) 196-212.

[7] Dress, A.W.M., Huson, D.H.: On Tilings of the Plane. Geometriae Dedicata,
24 (1987) 295-310.

[8] M. L. Hartley, All polytopes are quotients, and isomorphic polytopes are quo-
tients by conjugate subgroups, Discrete Comput. Geom. 21 (1999), 289-298.

[9] Holt, D.F., Eick, B., O’Brien, E.A. Handbook of Computational Group Theory,
Chapman and Hall/CRC (2005).
[10] Hubard I. Two-orbit polyhedra from groups European Journal of Combina-
torics, 31 (2010), 943-960.
[11] Hubard I. From geometry to groups and back: The study of highly symmetric
polytopes, ProQuest LLC, Ann Arbor, MI, 2007, Thesis (Ph.D.)York University
(Canada). MR 2712832.

[12] Hubard 1., Orbanic A., Weiss A.I, Monodromy groups and self-invariance,
Canadian Journal of Mathematics 61 (2009), 1300-1324.

[13] Huson, D.H. The generation and classification of tile-k-transitive tilings of Eu-
clidean plane, the sphere and the hyperbolic plane Geom. Dedicata 47 (3)
(1993) 269-296.

[14] Koci¢, J. Symmetry-type graphs of Platonic and Archimedean solids, Mathe-
matical Communications 16 (2011), 491-507.

[15] McMullen, P. Regular polytopes of nearly full rank: Addendum Discrete Com-
put. Geom. 49 (3) (2013) 703705.

[16] McMullen P., Schulte E. Abstract Regular Polytopes, Cambridge University
Press, (2002).

[17] Orbanié¢ A., Pellicer D., Weiss A. I. Map operation and k-orbit maps. Journal
of Combinatorial Theory, Series A 117 (4) (2009) 411-429.

[18] Pisanski T. Personal communication.



28 G. Cunningham, M. del Rio, I. Hubard and M. Toledo

[19] Schulte, E., Weiss, A. I. Chiral polytopes. Applied geometry and discrete math-
ematics, 493516, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer.
Math. Soc., Providence, RI, 1991.

[20] Sirani J., Tucker T. W., Watkins M.E., Realizing finite edge-transitive orientable
maps, Journal of Graph Theory 37 (2001), 1-34.

[21] Wilson S. Maniplezes: Part 1: Maps, Polytopes, Symmetry and Operators, Sym-
metry 4 (2012), 265-275.

Gabe Cunningham
University of Massachusetts Boston, USA
e-mail: gabriel.cunningham@gmail.com

Maria Del Rio-Francos

Institute of Mathematics Physics and Mechanics
University of Ljubljana, Slovenia.

e-mail: maria.delrio@fmf.uni-1j.si

Isabel Hubard

Instituto de Matemaéticas

Universidad Nacional Auténoma de México, México
e-mail: isahubard@im.unam.mx

Micael Toledo

Instituto de Matematicas

Universidad Nacional Auténoma de México, México
e-mail: micael50@hotmail.com



